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1 Abstract 
Numerical modelling of coupled hydro-mechanical (HM) processes in porous materials presents a significant 

challenge, primarily due to their intricate physical nature, resulting in governing equations with complex initial 

and boundary conditions (IC/BCs) expressed as nonlinear partial differential equations (PDEs). Physics-informed 

neural networks (PINNs) have emerged as an innovative approach to solving PDEs while effectively handling the 

IC/BCs within a single computational algorithm, applicable to both forward and inverse problems. The framework 

is used to develop surrogate models of problems, making it suitable for scenarios where direct numerical 

simulations are computationally demanding. The present paper aims to investigate the application of the PINNs 

in addressing fundamental coupled HM one-dimensional consolidation problems in porous materials. Compared 

to analytical solutions, simulations results revealed that the PINN model can accurately capture the hydro-

mechanical behaviour of the porous materials. 

2 Research method  

In the present study, a discrete-time physics-informed neural network (PINN) is employed to model the one-

dimensional consolidation problem, as shown in Figure 1. In this approach, time, as an independent variable, is 

discretized into consecutive intervals in which the unknowns of the problem are approximated by neural networks 

(NNs). As time is assumed to be constant within each interval, the input to the NNs consists solely of spatial 

coordinates, resulting in one order reduction of the input-space dimension. This highlights the main difference 

between discrete- and continuous-time PINNs, where time is also included as an input to the NNs. 

Moreover, the parameters of these NNs are determined through an iterative optimization algorithm, known as 

training, in each time interval. In conventional machine learning and deep learning methods, the loss function is 

typically based on the sum of squared errors, requiring empirical data. In contrast, the PINN framework 

incorporates the known physics of the problem, including governing equations (GEs) and initial and boundary 

conditions (IC/BCs), into the loss function as additional regularization terms (Nguyen et al., 2022; Raissi et al., 

2019; Raissi & Karniadakis, 2018). Although the PINN framework can incorporate empirical data, this study aims 

to solve the 1D consolidation problem using a data-free approach, relying solely on physical constraints. 

 

2.1 Governing equations, boundary and initial conditions 
The governing equations (GEs) associated with the one-dimensional consolidation problem are conservation of 

linear momentum in x-direction (see Figure 1) and pore fluid mass as stated in Eqs. (1) and (2). 
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where 𝑢 and 𝑝 are displacement and pore fluid pressure, 𝐾𝑑𝑟  and υ are bulk modulus and Poisson’s ratio of the 

porous medium in drained condition, and 𝑘 and  𝜇 are intrinsic permeability and fluid viscosity, respectively. 

Moreover, 𝛼 and 𝑄 are Biot’s coefficients determined according to fluid and solid grains bulk moduli (Zienkiewicz 

et al., 1980). 

In addition to the proposed GEs stated in Eqs. (1) – (2), the IC/BCs of the problem for time interval, 𝑡𝑖 , are as 

follows 

𝜎𝑥𝑥(0) = 𝜎0 (4) 

𝑢(𝐿𝑥) = 0 (5) 

𝑝(0) = 0 (7) 

𝜕𝑝 𝜕𝑥⁄ (𝐿𝑥) = 0 (8) 

 

in which 𝜎𝑥𝑥 and 𝜎0 are the total stress in x-direction and the applied load as shown in Figure 1. 

 

 
Figure 1- One-dimensional consolidation 

 

2.2 Discrete-time physics-informed neural networks framework for consolidation 
To apply the discrete-time PINN to the 1D consolidation problem, the total time of the problem is divided into 

multiple time intervals (𝑡0, 𝑡1, 𝑡2, 𝑒𝑡𝑐.). Let us consider an arbitrary time interval beginning at 𝑡𝑖 and ends at 𝑡𝑖 +
∆𝑡. It is assumed that the quantities (𝑝̂̅, 𝑢̂̅) and their partial derivatives with respect to (𝑥̅, 𝑡̅) are known, meaning 

that the ICs of the current time interval are determined. For this time interval, the primary unknowns including 

pore fluid pressure and displacements, are approximated using fully connected multilayer perceptrons (MLPs) 

with the tanh activation function. Since the unknowns are functions of the spatial coordinate, 𝑥̅, the first step is to 

generate the input training set by randomly selecting points from the spatial domain (The □̅ denotes normalized 

variables to avoid numerical issues during computation). The loss function associated with present problem can 

be evaluated according to Eqs. (1) – (8) as specified in Eq. (9). 

 

𝐿𝑜𝑠𝑠(𝑡𝑖) =  ∑ 𝜆𝑗  𝐿𝑜𝑠𝑠𝑗

𝑗

 (9) 

 

where  𝐿𝑜𝑠𝑠𝑗  indicates individual loss terms, and 𝜆𝑗s are adaptive weights determined according to GradNorm 

algorithm (Chen et al., 2018).  
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It is worth noting that since the initial conditions (ICs) for the current time interval are assumed to be the final 

state of (𝑝̂̅, 𝑢̂̅) from the previous time interval, the corresponding loss term is determined accordingly. 

Following that, by approximating (𝑝̂̅, 𝑢̂̅), the loss value can be evaluated using Eq. (9). Notably, the partial 

derivatives of (𝑝̂̅, 𝑢̂̅) with respect to independent variables, (𝑥̅, 𝑡̅), can be obtained using automatic differentiation 

technique implicitly implemented in open-source python packages (Haghighat & Juanes, 2021; Paszke et al., 

2017). 

 

3 Results 

Figure 2 shows the training history and prediction results of the PINN model along with the analytical solution 

(Terzaghi, 1943). According to Figure 2, it can be concluded that the PINN model is able to capture the true 

solution with the average relative errors of 1.64% and 0.26% for normalized pore fluid pressure and displacement. 

It should be highlighted that the displacement values are normalized with respect to ultimate deformation, 𝑢𝑓. 

Moreover, to further examine the PINN accuracy, the model predictions are evaluated several times including 𝑡̅ =
0.0001, 0.005, 0.05, 0.2, 1.0 as depicted in Figure 3 and it can be observed that the PINN predictions are properly 

matched with the exact solution. 

 

 
Figure 2- Training and prediction results of PINN model vs Analytical solution for one-dimensional consolidation 

 

 

 
Figure 3- PINN model predictions for several times for one-dimensional consolidation 
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4 Conclusion 
Although physics-informed neural networks (PINNs) have been the subject of research in various fields of science 

and engineering, modelling the hydro-mechanical processes in porous materials remains challenging. In this study, 

the one-dimensional consolidation problem was modelled using the discrete-time PINN framework, achieving 

results that closely match the analytical solution, with average relative errors of 1.64% and 0.26% for normalized 

pore fluid pressure and displacements, respectively. 
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