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1 Introduction 

The selection of ecological indicators for assessing landslide susceptibility is highly context-dependent, varying 

significantly based on regional characteristics, data availability, and the specific objectives of the study. Despite 

this variability, certain indicators such as the Normalized Difference Vegetation Index (NDVI) and Land Use 

Land Cover (LULC) are consistently employed due to their relevance in reflecting vegetation health, land surface 

changes, and human-induced disturbances. NDVI helps capture variations in vegetation cover, which can 

influence slope stability, while LULC provides critical insights into land modification and land management 

practices that may exacerbate or mitigate landslide risks. Factors like Net Primary Productivity (NPP), Remote 

Sensing Ecological Index (RSEI) are less common (Broquet, M. et.al. 2024). These indicators are often used in 

conjunction with other environmental, topographic, and climatic factors to develop a comprehensive 

understanding of landslide susceptibility across different landscapes. In May 2023, Emilia-Romagna region in 

Italy experienced an exceptionally intense rainfall event which triggered more than 65 thousand landslides 

(Geoportale: https://regione.emilia-romagna.it ). This offers a unique opportunity with its precisely located failure 

points (landslide) which gives fine temporal resolution for “pre‐ vs. post‐failure” ecological indices, statistical 

robustness from a large, heterogeneous sample, and rich spatial variability (from dense forests to agricultural 

terraces), immediate validation opportunities, and all these factors make it especially beneficial for evaluating 

how NPP, RSEI, and NDVI relate to both the initiation of landslides and the subsequent ecological recovery, 

further help to check which ecological feature is most suited for landslide susceptibility analysis under climate 

change scenarios  (Duan, Y. et.al. 2025). 

This study employs a data-driven framework on the Google Earth Engine (GEE) platform, integrating 20 

geospatial and climatic parameters to model landslide susceptibility using Random Forest (RF) and LightGBM 

(LGBM) on GoogleColab used to introduce Explainable AI (XAI). Explainable AI (XAI) techniques, such as 

SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Diverse 

Counterfactual Explanations (DiCE), enable quantifying and visualizing how each ecological feature contributes 

to a model's predictions. This ensures that the selected variables are scientifically meaningful and operationally 

robust, while also revealing complex associations between features and landslide predictability by understanding 

the influence of each feature on the model's outputs. This XAI-driven insight not only helps in selecting the best-

performing ecological factors but also supports detailed local interpretation of decisions and predictability. RF 

and LGBM are trained and tested on a subset of this specific event. In this study, RSEI, NPP and NDVI are 

integrated as variables along with other variables for generating a landslide susceptibility map of Region Emilia 

Romagna using RF.  

RF and LGBM offer different possibilities to understand the results of classification at the global level and local 

(pixel) level along with XAI, if only global explanation (feature importance’s averaged over the entire dataset) is 

required, RF’s built‐in feature importance can be adequate (Li, M. et. al. 2024); however, LGBM’s smoother 

continuous probabilities make local‐linear surrogates (LIME) more faithful and counterfactual searches (DiCE) 

more plausible. Faster predictions allow LIME and DiCE to sample more points, yielding richer, more robust 
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explanations. LGBM offers finer control over calibration and local decision‐surface complexity, directly 

benefiting explainability tools. For these reasons, when primary goal is high‐quality, stable local explanations and 

counterfactuals, LightGBM is the preferred choice (Levent, I. et.al.2025; David, R. et.al. 2006; and Zhang, D., & 

Gong, Y. 2020). 

 

2 Adopted tools and techniques 

To enhance the interpretability of machine learning (ML) models, several techniques are employed to better 

understand how input features influence predictions, in this study we employed (Table 1): 

• Feature Importance: This refers to techniques that assign scores to input features based on their impact 

on the model's predictions. Common methods include permutation importance and model-specific 

measures (e.g., Gini importance in random forests). 

• SHAP (SHapley Additive exPlanations): SHAP values provide a unified measure of feature contribution 

based on cooperative game theory. They quantify how much each feature contributes to the difference 

between a model's prediction and the average prediction, offering consistent and locally accurate 

explanations (Yan, Y.et al. 2021). 

• LIME (Local Interpretable Model-agnostic Explanations): LIME approximates the model locally around 

a prediction by fitting a simpler, interpretable model (e.g., linear regression). This approach helps explain 

individual predictions by highlighting which features were most influential in a specific instance. 

• DiCE (Diverse Counterfactual Explanations): DiCE generates diverse counterfactual instances that 

would have led to different outcomes. These counterfactuals help identify minimal and actionable 

changes to the input features needed to alter the model's decision, supporting transparency and decision-

making. 

 

The relevance of ecological parameters for landslide susceptibility assessment is discussed in the following 

sections both at the global and local level. The results show that according to the features importance at the global 

level, in RF method, NDVI and NPP appears to be equally important, but analyzing the results of SHAP, LIME 

and DiCE at the pixel level, it becomes clear that NPP is a better choice, if used without distinction in type of 

vegetation. 

 

Table 1. Summary of explainability tools used 
Type Purpose  Inference  Output Type 

Feature 

Importance 

Assess overall contribution of 

each feature 

Identify which features are most influential in 

the model’s decisions 

Numerical importance 

scores 

SHAP Global and local feature impact How much did each feature contribute? SHAP values per 

feature 

LIME Local explanation of prediction Why did the model make this decision? Top contributing 

features 

DiCE Counterfactual suggestions What minimal changes change/turn the 

result? 

New input 

suggestions 

3 Landslide susceptibility map (LSM) 
LSM shown in Figure1. Its preparation begins by loading the landslide feature collection, assigning each feature 

a random value, and limiting to 40,000 samples. The “presence” attribute is converted to integers to split into 

landslide (467) and non-landslide (738) subsets (total 1205 points), which are then randomly partitioned into 70 

% training and 30 % testing sets. A 20-band predictor image is sampled at each location to extract feature values 

(30m resolution). A Random Forest classifier (100 trees, minimum leaf pop. = 5) is trained using “landslide” as 

the target and all bands as inputs. The model is applied across the predictor image to generate a landslide 

probability map, which is rescaled and exported. Variable importance and out-of-bag error are reported, and 

testing results (AUC-ROC=0.90) are also exported. Finally, probabilities (0–100 %) are classified into six 

susceptibility categories: Very Low (0–15 %), Low (15–30 %), Low–Moderate (30–45 %), Moderate–High (45–

60 %), High (60–80 %), and Very High (≥ 80 %). 
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4 Impact of parameters at global level: feature importance and SHAP analysis 

Figure 2 shows that, based on feature importance derived from the Random Forest (RF) model in Google 

Earth Engine (GEE) at the global scale, NDVI and NPP appear to be equally important predictors. However, 

further analysis using SHAP (Figure 3) values reveals that NPP has a more significant impact on model predictions 

compared to NDVI (Nohara, Y. et.al. 2021) and RSEI contribution appears less significant in comparison to NDVI 

and NPP. 

 

 

 
Figure 1. Landslide Susceptibility Map (LSM) 

 

 
Figure 2. Feature Importance for Rainfall Triggered Landslides using Random Forest (RF) 
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Figure 3. Impact of features (Variables) in prediction of Model Using SHAP 

5  Impact of parameters at pixel level: LIME and DiCE 

LIME and DiCE are better suited to investigate the results of the model at the local (pixel) level (Bujar, R. et.al. 

2024). To this purpose, two points are considered: point 1 is classified as a pixel having Landslide and point 2 is 

classified as pixel having Non-Landslide respectively as original outcome.   

5.1 Point 1 
Figure 4 presents the LIME local explanation for point 1, where the model predicts a 66% probability of a landslide 

(see Table 2). The blue bars (left) represent features that contribute to a prediction of No Landslide, while the 

orange bars (right) indicate features that push the prediction toward Landslide. In this instance (see Table 3), high 

mean precipitation (1.72 compared to a threshold of 0.85) emerges as the strongest factor opposing a landslide 

(+0.20), acting as a protective feature. Conversely, a steep slope (1.33 vs. 0.71) is the most influential feature 

promoting a landslide (+0.18). Additional, though weaker, contributions from elevation, low soil density, and 

Topographic Position Index (TPI) also support the landslide prediction. 

Table 4 illustrates a counterfactual explanation generated using DiCE, showing the minimal feature changes 

required to shift a model prediction from No Landslide to Landslide. For example, a reduction in NDVI (vegetation 

index) moves the prediction toward landslide, suggesting that vegetation stress is a key risk factor. Similarly, a 

significant increase in slope can locally drive the model’s decision toward a landslide outcome. These results 

demonstrate how small but critical changes in specific features can alter model predictions, providing actionable 

insights for interpreting and mitigating landslide susceptibility. 
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Figure 4. Snapshot of the analysis tool LIME and DiCE using LGBM point 1  
 

Table 2. Model prediction summary point 1 
Predicted Class Probability 

Landslide 0.66 

No Landslide 0.34 

 

Table 3. Point 1 LIME Local Explanation: Top features that LIME found most influential for this prediction  
Feature Condition Contribution Toward 

Landslide 

Standardized 

Value 

Mean Precipitation Precipitation > 0.85 -0.26 1.72 

Slope  Slope > 0.71 0.18 1.33 

Elevation > Elevation > 0.46 0.15 3.11 

Soil Density  Soil Density ≤ –0.11 0.07 –1.93 

TPI  TPI ≤ –0.41 0.07 –0.63 

 

Table 4. Counterfactual via DiCE examples that would flip the model’s decision for Point 1 
Counterfactual 

(CF) 

Changed Feature Standardized Value Outcome 

CF1 Aspect –0.886 No Landslide 

CF2  Mean Precipitation –1.402 Landslide 

CF3 NDVI –1.319 Landslide 

 

 

5.2 Point 2  
For Point 2 (Figure 5), the model strongly predicts a landslide, as summarized in  

Table 5. LIME local explanations (Table 6) identify terrain steepness (slope), elevation, and precipitation trends 

as the primary contributors driving the prediction. Counterfactual analysis using DiCE (Table 7) demonstrates 

that relatively small changes particularly in Net Primary Productivity (NPP) or slope are sufficient to reverse the 

model's prediction, indicating sensitivity to these features. 
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Table 5. Model prediction summary point 2 

Predicted Class Probability 

Landslide 0.93 

No Landslide 0.07 

 

 

Table 6. Point 2 LIME Local Explanation: Top features that LIME found most influential for this prediction 
Feature Condition Contribution Toward 

Landslide 

Standardized 

Value 

Slope Slope > 0.75 0.26 1.26 

Elevation -0.23 < Elevation <=  0.16 0.36 

Mean 

Precipitation 

-0.76 < MeanPrecip <= 0.11 -0.05 

Shape Index -0.31 < Shape Index <=  0.08 0.17 

NPP  0.06 < NPP <= 0.78 0.05 0.60 

 

Table 7.  Counterfactual via DiCE examples that would flip the model’s decision for Point 2 
Counterfactual 

(CF) 
Changed Features Standardized Value Outcome 

CF1 NPP 0.698 Landslide 

CF2 Elevation 3.514 Landslide 

CF3 
NPP, Slope 

NPP: 0.360, Slope: 

1.885 
Landslide 

 

 

 

6 Conclusions 

The integration of explainable machine learning methods emphasizes the importance of interpretable and robust 

predictive models for climate adaptation and slope stabilization, especially as extreme environmental events are 

expected to increase in frequency and intensity. By quantifying each feature’s contribution, XAI helps to prioritize 

ecological factors that genuinely improve model performance. Furthermore, local-level explanations enable 

detailed decision-making, showing how small changes in ecological variables might alter predicted susceptibility 

in specific pixels or zones. LGBM compatibility with explainability tools such as LIME and DiCE makes it 

particularly well-suited for complex, high-dimensional geospatial analyses. 

SHAP values provide global consistency and quantify each feature's overall impact on the model's output, while 

LIME offers localized, instance-level explanations that can be used to audit or justify specific risk assessments. 

DiCE adds a complementary perspective by generating counterfactual scenarios, allowing exploration of model 

robustness and identification of actionable feature thresholds. Together, these tools deliver both “why” and “what-

if” perspectives, enabling more transparent and trustworthy decision-making in landslide susceptibility modeling. 

 

 

 
Figure 5. Snapshot of the analysis tool LIME and DiCE using LGBM point 2 
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The findings demonstrate that, at a global level, feature importance analysis using the Random Forest algorithm 

suggests comparable significance for NDVI (Normalized Difference Vegetation Index) and NPP (Net Primary 

Productivity). However, more granular, pixel-level analyses using SHAP, LIME, and DiCE reveal that NPP is a 

more effective predictor of landslide risk particularly when vegetation type is not explicitly differentiated. This 

highlights the value of localized explainability techniques in refining ecological variable selection beyond what 

global importance rankings can capture. 
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