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1 Introduction

The selection of ecological indicators for assessing landslide susceptibility is highly context-dependent, varying
significantly based on regional characteristics, data availability, and the specific objectives of the study. Despite
this variability, certain indicators such as the Normalized Difference Vegetation Index (NDVI) and Land Use
Land Cover (LULC) are consistently employed due to their relevance in reflecting vegetation health, land surface
changes, and human-induced disturbances. NDVI helps capture variations in vegetation cover, which can
influence slope stability, while LULC provides critical insights into land modification and land management
practices that may exacerbate or mitigate landslide risks. Factors like Net Primary Productivity (NPP), Remote
Sensing Ecological Index (RSEI) are less common (Broquet, M. et.al. 2024). These indicators are often used in
conjunction with other environmental, topographic, and climatic factors to develop a comprehensive
understanding of landslide susceptibility across different landscapes. In May 2023, Emilia-Romagna region in
Italy experienced an exceptionally intense rainfall event which triggered more than 65 thousand landslides
(Geoportale: https://regione.emilia-romagna.it ). This offers a unique opportunity with its precisely located failure
points (landslide) which gives fine temporal resolution for “pre- vs. post-failure” ecological indices, statistical
robustness from a large, heterogeneous sample, and rich spatial variability (from dense forests to agricultural
terraces), immediate validation opportunities, and all these factors make it especially beneficial for evaluating
how NPP, RSEI, and NDVI relate to both the initiation of landslides and the subsequent ecological recovery,
further help to check which ecological feature is most suited for landslide susceptibility analysis under climate
change scenarios (Duan, Y. et.al. 2025).

This study employs a data-driven framework on the Google Earth Engine (GEE) platform, integrating 20
geospatial and climatic parameters to model landslide susceptibility using Random Forest (RF) and LightGBM
(LGBM) on GoogleColab used to introduce Explainable AI (XAI). Explainable AI (XAI) techniques, such as
SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Diverse
Counterfactual Explanations (DiCE), enable quantifying and visualizing how each ecological feature contributes
to a model's predictions. This ensures that the selected variables are scientifically meaningful and operationally
robust, while also revealing complex associations between features and landslide predictability by understanding
the influence of each feature on the model's outputs. This XAl-driven insight not only helps in selecting the best-
performing ecological factors but also supports detailed local interpretation of decisions and predictability. RF
and LGBM are trained and tested on a subset of this specific event. In this study, RSEI, NPP and NDVI are
integrated as variables along with other variables for generating a landslide susceptibility map of Region Emilia
Romagna using RF.

RF and LGBM offer different possibilities to understand the results of classification at the global level and local
(pixel) level along with XAlI, if only global explanation (feature importance’s averaged over the entire dataset) is
required, RF’s built-in feature importance can be adequate (Li, M. et. al. 2024); however, LGBM’s smoother
continuous probabilities make local-linear surrogates (LIME) more faithful and counterfactual searches (DiCE)
more plausible. Faster predictions allow LIME and DiCE to sample more points, yielding richer, more robust
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explanations. LGBM offers finer control over calibration and local decision-surface complexity, directly
benefiting explainability tools. For these reasons, when primary goal is high-quality, stable local explanations and
counterfactuals, LightGBM is the preferred choice (Levent, 1. et.al.2025; David, R. et.al. 2006; and Zhang, D., &
Gong, Y. 2020).

2 Adopted tools and techniques
To enhance the interpretability of machine learning (ML) models, several techniques are employed to better
understand how input features influence predictions, in this study we employed (Table 1):

e Feature Importance: This refers to techniques that assign scores to input features based on their impact
on the model's predictions. Common methods include permutation importance and model-specific
measures (e.g., Gini importance in random forests).

e SHAP (SHapley Additive exPlanations): SHAP values provide a unified measure of feature contribution
based on cooperative game theory. They quantify how much each feature contributes to the difference
between a model's prediction and the average prediction, offering consistent and locally accurate
explanations (Yan, Y.et al. 2021).

e LIME (Local Interpretable Model-agnostic Explanations): LIME approximates the model locally around
a prediction by fitting a simpler, interpretable model (e.g., linear regression). This approach helps explain
individual predictions by highlighting which features were most influential in a specific instance.

e DiCE (Diverse Counterfactual Explanations): DiCE generates diverse counterfactual instances that
would have led to different outcomes. These counterfactuals help identify minimal and actionable
changes to the input features needed to alter the model's decision, supporting transparency and decision-
making.

The relevance of ecological parameters for landslide susceptibility assessment is discussed in the following
sections both at the global and local level. The results show that according to the features importance at the global
level, in RF method, NDVI and NPP appears to be equally important, but analyzing the results of SHAP, LIME
and DiCE at the pixel level, it becomes clear that NPP is a better choice, if used without distinction in type of
vegetation.

Table 1. Summary of explainability tools used

Type Purpose Inference Output Type

Feature Assess overall contribution of = Identify which features are most influential in = Numerical importance

Importance each feature the model’s decisions scores

SHAP Global and local feature impact = How much did each feature contribute? SHAP values per
feature

LIME Local explanation of prediction =~ Why did the model make this decision? Top contributing
features

DiCE Counterfactual suggestions What minimal changes change/turn the = New input

result? suggestions

3 Landslide susceptibility map (LSM)

LSM shown in Figurel. Its preparation begins by loading the landslide feature collection, assigning each feature
a random value, and limiting to 40,000 samples. The “presence” attribute is converted to integers to split into
landslide (467) and non-landslide (738) subsets (total 1205 points), which are then randomly partitioned into 70
% training and 30 % testing sets. A 20-band predictor image is sampled at each location to extract feature values
(30m resolution). A Random Forest classifier (100 trees, minimum leaf pop. = 5) is trained using “landslide” as
the target and all bands as inputs. The model is applied across the predictor image to generate a landslide
probability map, which is rescaled and exported. Variable importance and out-of-bag error are reported, and
testing results (AUC-ROC=0.90) are also exported. Finally, probabilities (0—100 %) are classified into six
susceptibility categories: Very Low (0—15 %), Low (15-30 %), Low—Moderate (30—45 %), Moderate—High (45—
60 %), High (60-80 %), and Very High (> 80 %).
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Figure 1. Landslide Susceptibility Map (LSM)

4 Impact of parameters at global level: feature importance and SHAP analysis

Figure 2 shows that, based on feature importance derived from the Random Forest (RF) model in Google
Earth Engine (GEE) at the global scale, NDVI and NPP appear to be equally important predictors. However,
further analysis using SHAP (Figure 3) values reveals that NPP has a more significant impact on model predictions
compared to NDVI (Nohara, Y. et.al. 2021) and RSEI contribution appears less significant in comparison to NDVI
and NPP.
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Figure 2. Feature Importance for Rainfall Triggered Landslides using Random Forest (RF)
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Figure 3. Impact of features (Variables) in prediction of Model Using SHAP

5 Impact of parameters at pixel level: LIME and DiCE

LIME and DiCE are better suited to investigate the results of the model at the local (pixel) level (Bujar, R. et.al.
2024). To this purpose, two points are considered: point 1 is classified as a pixel having Landslide and point 2 is
classified as pixel having Non-Landslide respectively as original outcome.

5.1 Point 1

Figure 4 presents the LIME local explanation for point 1, where the model predicts a 66% probability of a landslide
(see Table 2). The blue bars (left) represent features that contribute to a prediction of No Landslide, while the
orange bars (right) indicate features that push the prediction toward Landslide. In this instance (see Table 3), high
mean precipitation (1.72 compared to a threshold of 0.85) emerges as the strongest factor opposing a landslide
(10.20), acting as a protective feature. Conversely, a steep slope (1.33 vs. 0.71) is the most influential feature
promoting a landslide (+0.18). Additional, though weaker, contributions from elevation, low soil density, and
Topographic Position Index (TPI) also support the landslide prediction.

Table 4 illustrates a counterfactual explanation generated using DiCE, showing the minimal feature changes
required to shift a model prediction from No Landslide to Landslide. For example, a reduction in NDVI (vegetation
index) moves the prediction toward landslide, suggesting that vegetation stress is a key risk factor. Similarly, a
significant increase in slope can locally drive the model’s decision toward a landslide outcome. These results
demonstrate how small but critical changes in specific features can alter model predictions, providing actionable
insights for interpreting and mitigating landslide susceptibility.
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fusr/local/lib/python3.11/dist-packages/lightgbm/sklearn.py:1108: UserWarning: X does not have valid feature names, but LGBMClassifier was fitted with feature names

X = _LGBMValidateData(

fusr/local /1ib/python3.11/dist-packages/sklearn/neighbors/ base.py:838: UserWlarning: X does not have valid feature names, but KNeighborsClassifier was fitted with feature names

X = validate_data(

Prediction probabilities no_slide slide Feature Value a
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0 -0.093078 -0.184568 3.1095 1791469 2.123357 -0.893543 2.978954 2.980072 3.027861 1720739 -0.470073  1.368349 -0.010724 0.086315 1.332254
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0 - -0.8860075 - 21892162
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3 rows x 21 columns

Skipping Alibi Counterfactual explanation due to potential compatibility issues with scikit-learn model.

Analysis complete. Metrics saved to GEE Exports/landslide model performance.csv

Figure 4. Snapshot of the analysis tool LIME and DiCE using LGBM point 1

Table 2. Model prediction summary point 1

Predicted Class Probability
Landslide 0.66
No Landslide 0.34

Table 3. Point 1 LIME Local Explanation: Top features that LIME found most influential for #his prediction

Feature Condition

Mean Precipitation Precipitation > 0.85

Slope Slope > 0.71
Elevation > Elevation > 0.46
Soil Density Soil Density <—0.11

TPI TPI<-0.41

Contribution Toward
Landslide

-0.26
0.18
0.15
0.07
0.07

Standardized
Value
1.72
1.33
3.11
-1.93
-0.63

Table 4. Counterfactual via DiCE examples that would flip the model's decision for Point 1

Counterfactual ~ Changed Feature Standardized Value
(CF)
CF1 Aspect —0.886
CF2 Mean Precipitation —1.402
CF3 NDVI -1.319

Outcome

No Landslide
Landslide
Landslide

5.2 Point 2

For Point 2 (Figure 5), the model strongly predicts a landslide, as summarized in
Table 5. LIME local explanations (Table 6) identify terrain steepness (slope), elevation, and precipitation trends
as the primary contributors driving the prediction. Counterfactual analysis using DiCE (Table 7) demonstrates
that relatively small changes particularly in Net Primary Productivity (NPP) or slope are sufficient to reverse the

model's prediction, indicating sensitivity to these features.
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Landslide [ 0.93 -0.23 < Elevation <=..
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No Landslide Landslide Feature Value

Aspect Elevation GaussianC HAND Hillshade Horizontall MaximalC ipitation ... NDVI NPP Northness  RSEI ShapeIndex
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Figure 5. Snapshot of the analysis tool LIME and DiCE using LGBM point 2

Table 5. Model prediction summary point 2
Predicted Class Probability
Landslide 0.93
No Landslide 0.07

Table 6. Point 2 LIME Local Explanation: Top features that LIME found most influential for this prediction

Feature Condition Contribution Toward Standardized
Landslide Value

Slope Slope > 0.75 0.26 1.26
Elevation -0.23 < Elevation <= 0.16 0.36

Mean -0.76 < MeanPrecip <= 0.11 -0.05
Precipitation

Shape Index -0.31 < Shape Index <= 0.08 0.17

NPP 0.06 <NPP <=0.78 0.05 0.60

Table 7. Counterfactual via DICE examples that would flip the model's decision for Point 2

?CC;I)H terfactual Changed Features Standardized Value Outcome
CF1 NPP 0.698 Landslide
CF2 Elevation 3.514 Landslide
CF3 NPP, Slope I;Iggs 0.360,  Slope: Landslide

6 Conclusions

The integration of explainable machine learning methods emphasizes the importance of interpretable and robust
predictive models for climate adaptation and slope stabilization, especially as extreme environmental events are
expected to increase in frequency and intensity. By quantifying each feature’s contribution, XAI helps to prioritize
ecological factors that genuinely improve model performance. Furthermore, local-level explanations enable
detailed decision-making, showing how small changes in ecological variables might alter predicted susceptibility
in specific pixels or zones. LGBM compatibility with explainability tools such as LIME and DiCE makes it
particularly well-suited for complex, high-dimensional geospatial analyses.

SHAP values provide global consistency and quantify each feature's overall impact on the model's output, while
LIME offers localized, instance-level explanations that can be used to audit or justify specific risk assessments.
DiCE adds a complementary perspective by generating counterfactual scenarios, allowing exploration of model
robustness and identification of actionable feature thresholds. Together, these tools deliver both “why” and “what-
if”” perspectives, enabling more transparent and trustworthy decision-making in landslide susceptibility modeling.
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The findings demonstrate that, at a global level, feature importance analysis using the Random Forest algorithm
suggests comparable significance for NDVI (Normalized Difference Vegetation Index) and NPP (Net Primary
Productivity). However, more granular, pixel-level analyses using SHAP, LIME, and DiCE reveal that NPP is a
more effective predictor of landslide risk particularly when vegetation type is not explicitly differentiated. This
highlights the value of localized explainability techniques in refining ecological variable selection beyond what
global importance rankings can capture.
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